Data Transmission 2.2 Methods of error detection (i) - 1 Parity checks are often used to check for errors that may occur during data transmission. - (a) A system uses even parity. Tick (\checkmark) to show whether the following three bytes have been transmitted correctly or incorrectly. | Received byte | Byte transmitted correctly | Byte transmitted incorrectly | |---------------|----------------------------|------------------------------| | 11001000 | | | | 01111100 | | | | 01101001 | | | [3] (b) A parity byte is used to identify which bit has been transmitted incorrectly in a block of data. The word "F L O W C H A R T" was transmitted using nine bytes of data (one byte per character). A tenth byte, the parity byte, was also transmitted. The following block of data shows all ten bytes received after transmission. The system uses **even parity** and column 1 is the parity bit. | | letter | column
1 | column
2 | column
3 | column
4 | column
5 | column
6 | column
7 | column
8 | |----------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | byte 1 | F | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | | byte 2 | L | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | | byte 3 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | | byte 4 | W | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | | byte 5 | С | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | | byte 6 | Н | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | | byte 7 | Α | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | byte 8 | R | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | | byte 9 | Т | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | | parity
byte | | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | One of the bits has been transmitted incorrectly. | |--| | Write the byte number and column number of this bit: | | Byte number | | Column number | | [2] | | (c) | Giv |
e the | denar | | | | | te: 1 0 | 111 | 111 | | | |-----|------|-----------|----------------|----------|----------|----------|----------|----------------|----------|---------|------------------------------------|------| | | | | | | | | | | | | | | | d) | Αp | arity | check | may no | ot ident | ify that | a bit h | as bee | n trans | smitted | I incorrectly. | | | | De | scrib | e one s | situatio | n in wh | ich thi | s could | occur. | [1] | | | | | | | | | | | | | | [1] | | | | | | | | | | | | | | | | 2 | Pari | ity ch | ecks ar | e used | to ched | ck for e | rrors di | uring da | ata tran | smissi | on. A system uses odd parit | y. | | | (a) | Con | nplete th | ne follo | wing tw | o byte | s of dat | a so th | at they | both h | ave odd parity: | | | | | | | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | | | | | | | <u> </u> | |] | | | | | | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | | | | | | | | | | | | | | [2] | | | (b) | | | | | her me | ethod w | vhich c | an be | used to | o check whether data has | been | | | | corr | ectly tra | ınsmitte | ed. | | | | | | | | | | | Nam | ne of me | ethod . | | | | | | | | | | | | Des | cription | [2] | 3 (a) Check digits are used to ensure the accuracy of input data. A 7-digit code number has an extra digit on the right, called the check digit. | Digit position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |----------------|---|---|---|---|--------|---|---|---| | Digit | _ | - | - | | 2.5—2. | - | - | - | The check digit is calculated as follows: - · each digit in the number is multiplied by its digit position - the seven results are then added together - this total is divided by 11 - the remainder gives the check digit (if the remainder = 10, the check digit is X) | (i) | Calculate th | ne check | digit for | the follow | wing code | e number | r. Show a | all your wo | rking. | | |------|---------------------------------------|--------------------|----------------------|-------------------------|--------------------|------------------|-----------|-------------|--------|-----| | | 4 | 2 | 4 | 1 | 5 | 0 | 8 | Check digit | | | | | | | | | [2] | | (ii) | An operator | hae iue | t kovod i | n the fell | owing co | do numb | 0 111 | | | | | (/ | · ··· · · · · · · · · · · · · · · · · | nas jus | t Keyeu i | ii tile loll | owing co | de Hullib | er: | | | | | (, | 3 | - | - | | 0 | | | X | | | | (, | | 2 | 4 | 0 | 0 | 4 | | X | | | | () | 3 | 2 | 4 orrectly ke | 0
eyed in th | 0 he code r | 4 number? | 5 | x | | | | () | 3 | 2
erator co | 4
orrectly ke | 0
eyed in th | 0 he code r | 4 number? | 5 | | | | | () | Has the ope | 2 erator co | 4
orrectly ke | 0 eyed in the | 0 he code r | 4
number? | 5 | | | | | () | Has the ope | 2 erator co | 4
orrectly keep | 0
eyed in the | 0 he code r | 4
number? | 5 | | | | - **(b)** When data are transmitted from one device to another, a parity check is often carried out on each byte of data. The parity bit is often the leftmost bit in the byte. - (i) If a system uses even parity, give the parity bit for each of the following bytes: | | 1 | 1 | 0 | 0 | 1 | 1 | 0 | |------------|---|---|---|---|---|---|---| | | | | | | | | | | parity bit | | | | | | | | (ii) A parity check can often detect corruption of a byte. Describe a situation in which it cannot detect corruption of a byte. [1] Check digits are used to ensure the accuracy of entered data. A 7-digit number has an extra digit on the right, called the check digit. | | digit pos | sition: | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | | |-----|---|--------------------------------|------------------|-----------------------|-------------------|-------|---------|----------|----------|---------|----------------------|------| | | digit: | | - | - | - | - | - | - | - | _
c | −
†
heck digit | | | | The check digit each digit the seven this total is the remain | in the n
results
divided | umber
are the | is multip
en added | lied by
togeth | ier | | | ne chec | k digit | is X) | | | (a) | Calculate the | check o | digit for | the follo | owing r | numbe | r. Shov | v all yo | our wor | king. | | | | | | 4 | 2 | 4 | 1 | 5 | 0 | 8 | Check digit | | | | | | | | | | | | | (b) | An operator ha | ie iuet k | eved in | n the foll | owing | numhe | ır. | | | | | [2] | | (D) | All operator na | | | _ | | | _ | _ | v | | | | | | | 3 | 2 | 4 | 0 | 0 | 4 | 5 | X | | | | | | Circle below co | orrect i | f the ch | neck dig | it is co | | | orrect | if the c | heck o | ligit is incorrec | t. | | | | | | correc | t | inco | rrect | | | | | | | | Explain your ar | nswer. | | | | | | | | | | | | | | | | ••••• | | | | | | | | •••• | | | | | | | | | | | | | | •••• | | | | | | | | | | | | | | •••• | | | | | | | | | | | | | | [3] | | | | | | | | | | | | | | | 5 Five computer terms and seven descriptions are shown below. Draw a line to connect each computer term to its correct description. ## Computer term ## Description Serial, simplex data transmission Several bits of data sent down several wires, in both directions, but not at the same time Parallel, half-duplex data transmission Several bits of data sent down several wires, in both directions, at the same time Parity check An even or odd number of bits set to 1 in a byte, used to check if the byte has been transmitted correctly One bit sent at a time, over a single wire in one direction only Automatic repeat request (ARQ) An additional digit placed at the end of a number to check if the number has been entered correctly Checksum A value transmitted at the end of a block of data; it is calculated using the other elements in the data stream and is used to check for transmission errors An error detection method that uses response and time out when transmitting data; if a response is not sent back to the sender in an agreed amount of time, then the data is re-sent 6 When eight bytes of data have been collected, they are transmitted to a computer 100 km away. Parity checks are carried out to identify if the data has been transmitted correctly. The system uses **even parity** and column 1 is the parity bit. The eight bytes of data are sent together with a ninth parity byte: | | parity
bit | column
2 | column
3 | column
4 | column
5 | column
6 | column
7 | column
8 | |----------------|---------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | byte 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | byte 2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | | byte 3 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | byte 4 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | | byte 5 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | byte 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | byte 7 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | | byte 8 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | | parity
byte | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | | (i) | Identify which of the eight bytes contains an error. | | |-------|--|-----| | | byte | [1] | | (ii) | Identify which column contains an error. | | | | column | [1] | | (iii) | The incorrect bit is indicated where the byte number and column cross. | | | | Give the corrected byte. | | | | | [1] | | (iv) | Calculate the denary value of the corrected byte. | | | | | | | | | [4] | | (v) | Considering the fault condition given in part (c) , explain why it is very important that the incorrect bit is located and corrected. | |-----|--| | | | | | | | | | | | [2] | 7 Nine bytes of data are transmitted from one computer to another. Even parity is used. An additional parity byte is also sent. The ten bytes arrive at the destination computer as follows: | | parity bit | bit 2 | bit 3 | bit 4 | bit 5 | bit 6 | bit 7 | bit 8 | |-------------|------------|-------|-------|-------|-------|-------|-------|-------| | byte 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | | byte 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | byte 3 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | | byte 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | byte 5 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | | byte 6 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | | byte 7 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | | byte 8 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | | byte 9 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | | parity byte | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | One of the bits was corrupted during the data transmission. | (a) | Circle the corrupt bit in the corrupt byte in the table above. | [1] | |-----|--|-----| | (b) | Explain how the corrupted bit was found. | [2] | [3] 8 (a) Parity checks are often used to detect errors that may occur during data transmission. The received bytes in the table below were transmitted using odd parity. Tick (\checkmark) to show whether each byte has been corrupted during transmission or not corrupted during transmission. | Received byte | corrupted
during
transmission
(√) | not corrupted during transmission (✓) | |---------------|--|---------------------------------------| | 10110100 | | | | 01101101 | | | | 10000001 | | | (b) Another method of error detection is Automatic Repeat reQuest (ARQ). Explain how ARQ is used in error detection. | 9 | storage. | ına | |-----|---|-----| | | Describe each of the following error detection methods. | | | | Parity check | | | | | | | | | | | | | | | | Check digit | | | | | | | | | | | | | | | Che | ecksum | | | | | | | | | | | | | | | Aut | omatic Repeat request (ARQ) | | | | | | | | | | | | | | | | | [8] | | 10 | The three binary numbers in the registers A, B and C have been transmitted from one computer to | |----|---| | | another. | | | Parity bit | | | | | | | | |------------|------------|---|---|---|---|---|---|---| | Register A | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | | | | | | | | | | | | Register B | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | | | | | | | | | | | | Register C | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | One binary number has been transmitted incorrectly. This is identified through the use of a parity bit. Identify which register contains the binary number that has been transmitted **incorrectly**. Explain the reason for your choice. | The binary number that has been transmitted incorrectly is in Register | |---| | Explanation | [4] | 11 The three binary numbers in the registers X, Y and Z have been transmitted from one computer to another. | | | | | | | | | Parity bit | |------------|---|---|---|---|---|---|---|------------| | Register X | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | | | | | | | | | | | | Register Y | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | | | | | | | | | | | | Register Z | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | Only **one** binary number has been transmitted correctly. This is identified through the use of a parity bit. Identify which register contains the binary number that has been transmitted **correctly**. Explain the reason for your choice. | The binary number that has been transmitted correct | tly is in Register | |---|---------------------------| | Explanation | [4] | | 12 | Data can sometimes be corrupted when it is transmitted from one computer to another, causing errors to be present in the data. | |----|--| | | Identify and describe three methods of error detection that could be used to see if an error has occurred. | | | Error detection method 1 | | | Description | | | | | | | | | | | | Error detection method 2 | | | Description | | | | | | | | | | | | Error detection method 3 | | | Description | | | | | | | | | | [2] - Parity checks and Automatic Repeat reQuests (ARQ) can be used to check for errors during data transmission and storage. - (a) A system uses even parity. Write the appropriate parity bit for each byte. | Parity Bit | | | | | | | | |------------|---|---|---|---|---|---|---| | | 1 | 0 | 1 | 0 | 0 | 1 | 1 | | | 1 | 0 | 1 | 1 | 1 | 1 | 1 | | | 1 | 0 | 1 | 0 | 0 | 0 | 1 | (b) Explain how Automatic Repeat reQuests (ARQ) are used in data transmission and storage. [2] (c) State one other method that could be used to check for transmission errors. 14 The contents of three binary registers have been transmitted from one computer to another. **Even** parity has been used as an error detection method. The outcome after transmission is: Register A and Register C have been transmitted correctly. Register B has been transmitted incorrectly. Complete the **Parity bit** for each register to show the given outcome. | | Parity bit | | | | | | | | |------------|------------|---|---|---|---|---|---|-----| | Register A | | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | | | | | | | | | | | Register B | | 1 | 0 | 0 | 0 | 0 | 0 | 1 | | | | | | | | | | | | Register C | | 1 | 0 | 0 | 0 | 0 | 1 | 1 | | | | | | | | | | [3] | | 15 | The three binary | numbers in | the re | gisters gi | jiven have | been | transmitted | from | one | computer | to | |----|------------------|------------|--------|------------|------------|------|-------------|------|-----|----------|----| | | another. | | | | | | | | | | | One binary number has been transmitted incorrectly. This can be identified by the use of a **Parity bit**. Identify the binary number that has been transmitted **incorrectly**. Explain how you identified the incorrect binary number. | | Parity bit | | | | | | | | |------------|------------|---|---|---|---|---|---|---| | Register A | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | | | | | | | | | | | | Register B | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | | | | | | | | | | | | Register C | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | The binary number that has been transmitted incorrectly is in Register | |---| | Explanation | | | | | | | | | | | | [4] | | [1] | 16 Data is valuable to a company. | (a) | Companies use error detection methods to make sure that data is accurate. | | |-----|---|--| | | One error detection method is the use of a check digit. | | | | Explain what is meant by a check digit and how it is used to detect errors. | [4] | | Con | | | | | | l | | now | each method can keen the data secure | | | | each method can keep the data secure. | | | | urity method 1urity method 1 | Sec | | | | Sec | urity method 1 | | | | Com | Companies can use a range of security methods to keep their data secure. Identify two security methods that a company can use to keep their data secure and explain | 17 The contents of three binary registers have been transmitted from one computer to another. Odd parity has been used as an error detection method. The outcome after transmission is: - Register A and Register B have been transmitted correctly. - Register C has been transmitted incorrectly. Write the appropriate Parity bit for each register to show the given outcome. | | Parity
bit | | | | | | | | |------------|---------------|---|---|---|---|---|---|---| | Register A | | 0 | 1 | 0 | 0 | 0 | 1 | 1 | | Register B | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | Register C | | 0 | 0 | 0 | 0 | 0 | 1 | 1 | [3] | 18 | Two | error detection methods that Allison's computer uses are check digit and checksum. | |----|-----|--| | | (a) | Give two similarities between the check digit and checksum methods. | | | | 1 | | | | | | | | 2 | | | | [2] | | | | [4] | | | (b) | Identify one other error detection method that Allison's computer could use. | | | | Describe how the method checks for errors. | | | | Method | | | | Description | [4] | | 9 | Victo | oria is entering data into a compute | er system. The data will be transmitted to cloud storage. | |-----|-------|---|--| | | (a) | An even parity check is used to ch | neck for errors in the binary values after transmission. | | | | For each of the 7-bit binary value | es, write the Parity bit that makes sure even parity is met. | | | | 7-bit binary value | Parity bit | | | | 1100010 | | | | | 1001011 | | | | | 0100010 | | | | | 0010111 | | | | | | [4 | | (b) | | ntify two other error checking me rect after transmission. | thods that could be used to check the binary values are | | | Met | thod 1 | | | | Met | thod 2 | | | | | | [2] | | (c) | A cl | heck digit is used to check whether | er data is correct when entered into the system. | | | Des | scribe how a check digit can be us | sed to make sure the data entered is correct. |[4] - 20 Four 7-bit binary values are transmitted from one computer to another. A parity bit was added to each binary value creating 8-bit binary values. All the binary values have been transmitted correctly. - (a) Tick (✓) to show whether an Even or an Odd parity check has been used for each binary value. | 8-bit binary value | Even (√) | Odd
(√) | |--------------------|----------|------------| | 11111111 | | | | 01100110 | | | | 01111011 | | | | 10000000 | | | | (b) | The data will also be checked using a checksum. | |-----|---| | | Describe how a checksum can be used to check that the data has been transmitted correctly | - 21 Four 7-bit binary values are transmitted from one computer to another. A parity bit was added to each binary value creating 8-bit binary values. All the binary values have been transmitted correctly. - (a) Tick (✓) to show whether an Even or an Odd parity check has been used for each binary value. | 8-bit binary value | Even
(√) | Odd
(✓) | |--------------------|-------------|------------| | 10000001 | | | | 10000010 | | | | 00101001 | | | | 00101000 | | | (b) A parity check may not always detect errors that have occurred in data transmission. State why a parity check may not detect data transmission errors. [1] (c) Give one other error checking method that could be used to check for errors in data transmission. - 22 Four 7-bit binary values are transmitted from one computer to another. A parity bit is added to each binary value creating 8-bit binary values. All the binary values are transmitted and received correctly. - (a) Identify whether each 8-bit binary value has been sent using odd or even parity by writing odd or even in the type of parity column. | 8-bit binary value | Type of parity | |--------------------|----------------| | 01100100 | | | 10010001 | | | 00000011 | | | 10110010 | | | (b) | An error may not be detected when using a parity check. | |-----|--| | | Identify why an error may not be detected. | | | | | | [1] | - 23 Four 7-bit binary values are transmitted from one computer to another. A parity bit is added to each binary value creating 8-bit binary values. All the binary values are transmitted and received correctly. - (a) Identify whether each 8-bit binary value has been sent using odd or even parity by writing odd or even in the type of parity column. | 8-bit binary value | Type of parity | |--------------------|----------------| | 01111100 | | | 10010000 | | | 10011001 | | | 00101001 | | | (b) | The 8-bit binary value 10110001 is transmitted and received as 10110010 | | | | |-----|--|--|--|--| | | A parity check does not identify any errors in the binary value received. | | | | | | State why the parity check does not identify any errors. | | | | | | | | | | | | [1] | | | | - 24 Five statements are given about the error-checking methods checksum, check digit and parity check. - (a) Tick (✓) to show whether each statement applies to checksum, check digit or parity check. Some statements may apply to more than **one** error-checking method. | Statement | Checksum (√) | Check
digit
(✓) | Parity check (✓) | |---|--------------|-----------------------|------------------| | uses an additional bit to create an odd or even number of 1s | | | | | checks for errors on data entry | | | | | compares two calculated values to see if an error has occurred | | | | | will not detect transposition errors | | | | | sends additional values when data is transmitted from a computer to another | | | | | | | | | | (b) | Identify one other error-checking method. | | |-----|--|-----| | | | [1] | [5] - 25 Five statements are given about error-checking methods. - (a) Tick (✓) to show whether each statement applies to Automatic Repeat reQuest (ARQ), check digit or checksum. Some statements may apply to more than one error-checking method. | Statement | ARQ
(✔) | Check digit (✔) | Checksum
(✔) | |---|------------|-----------------|-----------------| | checks for errors on data entry | | | | | uses a process of acknowledgement and timeout | | | | | compares two calculated values to see if an error has occurred | | | | | may resend data until it is confirmed as received | | | | | checks for errors in data after transmission from a computer to another | | | | | (b) | Identify one other error-checking method. | | |-----|--|-----| | | | [1] | 26 A parity check is used to check for errors after transmission on the four given binary values. All **four** values are transmitted and received correctly. Identify whether each 8-bit binary value has been sent using odd or even parity by writing odd or even in the type of parity column. | Binary value | Type of parity | |--------------|----------------| | 10011001 | | | 01111110 | | | 11100000 | | | 00111001 | | | 27 | (b) | An odd parity check is used to detect errors in the data transmission. | | | | |----|-----|---|--|--|--| | | | Explain how the odd parity check detects errors. | [4] | | | | | | (c) | Another error detection method sends the data from the computer to the printer, then a copy of the data received is sent back from the printer to the computer. The two sets of data are compared to see if they match. | | | | | | | State the name of this type of error detection method. | | | | | | | [1] | | | | | 28 | Erro | ors can occur when data is transmitted. | |----|------|---| | | (a) | Give one reason an error may occur when data is transmitted. | | | | | | | | [1] | | | (b) | Some error detection methods use a calculated value to check for errors. | | | | Tick (\checkmark) one box to show which error detection method does not use a calculated value to check for errors. | | | | A Check digit | | | | B Checksum | | | | C Echo check | | | | D Parity check [1] | | | (c) | An automatic repeat request (ARQ) can be used to make sure that data is received free of errors. It can use a positive or negative acknowledgement method to do this. | | | | Explain how an ARQ operates using a positive acknowledgement method. | [5] | | | empany owner has installed a new network. Data is correct before it is transmitted across the work. | |-----|---| | The | company owner is concerned that data might have errors after transmission. | | (a) | Explain how the data might have errors after transmission. | | | | | | | | | | | | | | | | | | The | errors after transmission. | | e error detection system uses an odd parity check and a positive automatic repeat query RQ). | |------|--| | (i) | Describe how the error detection system operates to check for errors. | (ii) | Give two other error detection methods that could be used. | | . , | 1 | | | 2 | | | [2] | (b) The company owner decides to introduce an error detection system to check the data for **30** The table contains statements about error detection methods. Complete the table by giving the correct error detection method for each statement. | error detection method | statement | |------------------------|---| | | An odd or even process can be used. | | | A value is calculated from the data, using an algorithm. This happens before and after the data is transmitted. | | | A copy of the data is sent back to the sender by the receiver. | | | Acknowledgement and timeout are used. | | | A value is appended to data that has been calculated using the data. This value is checked on data entry. |